At this point we have created a number of control constructs … a richer set, really, than that provided by almost any other programming language. And, except for the FOR loop, it was pretty easy to do. Even that one was tricky only because it's tricky in assembler language.
I'll conclude this session here. To wrap the thing up with a red ribbon, we really should have a go at having real keywords instead of these mickey-mouse single-character things. You've already seen that the extension to multi-character words is not difficult, but in this case it will make a big difference in the appearance of our input code. I'll save that little bit for the next chapter . In that chapter we'll also address Boolean expressions, so we can get rid of the dummy version of Condition that we've used here. See you then.
For reference purposes, here is the completed parser for this session:
program Branch; { Constant Declarations } const TAB = ^I; CR = ^M; { Variable Declarations } var Look : char; { Lookahead Character } Lcount: integer; { Label Counter } { Read New Character From Input Stream } procedure GetChar; begin Read(Look); end; { Report an Error } procedure Error(s: string); begin WriteLn; WriteLn(^G, 'Error: ', s, '.'); end; { Report Error and Halt } procedure Abort(s: string); begin Error(s); Halt; end; { Report What Was Expected } procedure Expected(s: string); begin Abort(s + ' Expected'); end; { Match a Specific Input Character } procedure Match(x: char); begin if Look = x then GetChar else Expected('''' + x + ''''); end; { Recognize an Alpha Character } function IsAlpha(c: char): boolean; begin IsAlpha := UpCase(c) in ['A'..'Z']; end; { Recognize a Decimal Digit } function IsDigit(c: char): boolean; begin IsDigit := c in ['0'..'9']; end; { Recognize an Addop } function IsAddop(c: char): boolean; begin IsAddop := c in ['+', '-']; end; { Recognize White Space } function IsWhite(c: char): boolean; begin IsWhite := c in [' ', TAB]; end; { Skip Over Leading White Space } procedure SkipWhite; begin while IsWhite(Look) do GetChar; end; { Get an Identifier } function GetName: char; begin if not IsAlpha(Look) then Expected('Name'); GetName := UpCase(Look); GetChar; end; { Get a Number } function GetNum: char; begin if not IsDigit(Look) then Expected('Integer'); GetNum := Look; GetChar; end; { Generate a Unique Label } function NewLabel: string; var S: string; begin Str(LCount, S); NewLabel := 'L' + S; Inc(LCount); end; { Post a Label To Output } procedure PostLabel(L: string); begin WriteLn(L, ':'); end; { Output a String with Tab } procedure Emit(s: string); begin Write(TAB, s); end; { Output a String with Tab and CRLF } procedure EmitLn(s: string); begin Emit(s); WriteLn; end; { Parse and Translate a Boolean Condition } procedure Condition; begin EmitLn('<condition>'); end; { Parse and Translate a Math Expression } procedure Expression; begin EmitLn('<expr>'); end; { Recognize and Translate an IF Construct } procedure Block(L: string); Forward; procedure DoIf(L: string); var L1, L2: string; begin Match('i'); Condition; L1 := NewLabel; L2 := L1; EmitLn('BEQ ' + L1); Block(L); if Look = 'l' then begin Match('l'); L2 := NewLabel; EmitLn('BRA ' + L2); PostLabel(L1); Block(L); end; Match('e'); PostLabel(L2); end; { Parse and Translate a WHILE Statement } procedure DoWhile; var L1, L2: string; begin Match('w'); L1 := NewLabel; L2 := NewLabel; PostLabel(L1); Condition; EmitLn('BEQ ' + L2); Block(L2); Match('e'); EmitLn('BRA ' + L1); PostLabel(L2); end; { Parse and Translate a LOOP Statement } procedure DoLoop; var L1, L2: string; begin Match('p'); L1 := NewLabel; L2 := NewLabel; PostLabel(L1); Block(L2); Match('e'); EmitLn('BRA ' + L1); PostLabel(L2); end; { Parse and Translate a REPEAT Statement } procedure DoRepeat; var L1, L2: string; begin Match('r'); L1 := NewLabel; L2 := NewLabel; PostLabel(L1); Block(L2); Match('u'); Condition; EmitLn('BEQ ' + L1); PostLabel(L2); end; { Parse and Translate a FOR Statement } procedure DoFor; var L1, L2: string; Name: char; begin Match('f'); L1 := NewLabel; L2 := NewLabel; Name := GetName; Match('='); Expression; EmitLn('SUBQ #1,D0'); EmitLn('LEA ' + Name + '(PC),A0'); EmitLn('MOVE D0,(A0)'); Expression; EmitLn('MOVE D0,-(SP)'); PostLabel(L1); EmitLn('LEA ' + Name + '(PC),A0'); EmitLn('MOVE (A0),D0'); EmitLn('ADDQ #1,D0'); EmitLn('MOVE D0,(A0)'); EmitLn('CMP (SP),D0'); EmitLn('BGT ' + L2); Block(L2); Match('e'); EmitLn('BRA ' + L1); PostLabel(L2); EmitLn('ADDQ #2,SP'); end; { Parse and Translate a DO Statement } procedure Dodo; var L1, L2: string; begin Match('d'); L1 := NewLabel; L2 := NewLabel; Expression; EmitLn('SUBQ #1,D0'); PostLabel(L1); EmitLn('MOVE D0,-(SP)'); Block(L2); EmitLn('MOVE (SP)+,D0'); EmitLn('DBRA D0,' + L1); EmitLn('SUBQ #2,SP'); PostLabel(L2); EmitLn('ADDQ #2,SP'); end; { Recognize and Translate a BREAK } procedure DoBreak(L: string); begin Match('b'); EmitLn('BRA ' + L); end; { Recognize and Translate an "Other" } procedure Other; begin EmitLn(GetName); end; { Recognize and Translate a Statement Block } procedure Block(L: string); begin while not(Look in ['e', 'l', 'u']) do begin case Look of 'i': DoIf(L); 'w': DoWhile; 'p': DoLoop; 'r': DoRepeat; 'f': DoFor; 'd': DoDo; 'b': DoBreak(L); else Other; end; end; end; { Parse and Translate a Program } procedure DoProgram; begin Block(''); if Look <> 'e' then Expected('End'); EmitLn('END') end; { Initialize } procedure Init; begin LCount := 0; GetChar; end; { Main Program } begin Init; DoProgram; end. |